The sequence kernel association test for multicategorical outcomes

Author:

Jiang Zhiwen1ORCID,Zhang Haoyu2,Ahearn Thomas U.2,Garcia‐Closas Montserrat2,Chatterjee Nilanjan3,Zhu Hongtu1,Zhan Xiang4,Zhao Ni3ORCID

Affiliation:

1. Department of Biostatistics University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

2. Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA

3. Department of Biostatistics Johns Hopkins University Baltimore Maryland USA

4. Department of Biostatistics Peking University Beijing China

Abstract

AbstractDisease heterogeneity is ubiquitous in biomedical and clinical studies. In genetic studies, researchers are increasingly interested in understanding the distinct genetic underpinning of subtypes of diseases. However, existing set‐based analysis methods for genome‐wide association studies are either inadequate or inefficient to handle such multicategorical outcomes. In this paper, we proposed a novel set‐based association analysis method, sequence kernel association test (SKAT)‐MC, the sequence kernel association test for multicategorical outcomes (nominal or ordinal), which jointly evaluates the relationship between a set of variants (common and rare) and disease subtypes. Through comprehensive simulation studies, we showed that SKAT‐MC effectively preserves the nominal type I error rate while substantially increases the statistical power compared to existing methods under various scenarios. We applied SKAT‐MC to the Polish breast cancer study (PBCS), and identified gene FGFR2 was significantly associated with estrogen receptor (ER)+ and ER− breast cancer subtypes. We also investigated educational attainment using UK Biobank data () with SKAT‐MC, and identified 21 significant genes in the genome. Consequently, SKAT‐MC is a powerful and efficient analysis tool for genetic association studies with multicategorical outcomes. A freely distributed R package SKAT‐MC can be accessed at https://github.com/Zhiwen-Owen-Jiang/SKATMC.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Genetics (clinical),Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3