Polygenic hazard score models for the prediction of Alzheimer's free survival using the lasso for Cox's proportional hazards model

Author:

Hahn Georg1ORCID,Prokopenko Dmitry2,Hecker Julian3,Lutz Sharon M.1,Mullin Kristina2,Tanzi Rudolph E.2,DeSantis Stacia4,Lange Christoph1

Affiliation:

1. Harvard T.H. Chan School of Public Health Boston Massachusetts USA

2. Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology Massachusetts General Hospital Boston Massachusetts USA

3. Channing Division of Network Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts USA

4. The University of Texas Health Science Center Houston Texas USA

Abstract

AbstractThe prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is, a polygenic risk score with added epidemiological covariates. However, integrated risk models do not capture any time dependence, and may provide a point estimate of the relative risk with respect to a reference population. The aim of this work is twofold. First, we explore and advocate the idea of predicting the time‐dependent hazard and survival (defined as disease‐free time) of an individual for the onset of a disease. This provides a practitioner with a much more differentiated view of absolute survival as a function of time. Second, to compute the time‐dependent risk of an individual, we use published methodology to fit a Cox's proportional hazard model to data from a genetic SNP study of time to Alzheimer's disease (AD) onset, using the lasso to incorporate further epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status, 10 leading principal components, and selected genomic loci. We apply the lasso for Cox's proportional hazards to a data set of 6792 AD patients (composed of 4102 cases and 2690 controls) and 87 covariates. We demonstrate that fitting a lasso model for Cox's proportional hazards allows one to obtain more accurate survival curves than with state‐of‐the‐art (likelihood‐based) methods. Moreover, the methodology allows one to obtain personalized survival curves for a patient, thus giving a much more differentiated view of the expected progression of a disease than the view offered by integrated risk models. The runtime to compute personalized survival curves is under a minute for the entire data set of AD patients, thus enabling it to handle datasets with 60,000–100,000 subjects in less than 1 h.

Publisher

Wiley

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3