A novel application of data‐consistent inversion to overcome spurious inference in genome‐wide association studies

Author:

Janani Negar1ORCID,Young Kendra A.2ORCID,Kinney Greg2,Strand Matthew3,Hokanson John E.2,Liu Yaning1,Butler Troy1,Austin Erin1

Affiliation:

1. Department of Mathematical and Statistical Sciences University of Colorado Denver Denver Colorado USA

2. Department of Epidemiology Colorado School of Public Health Aurora Colorado USA

3. Division of Biostatistics National Jewish Health Denver Colorado USA

Abstract

AbstractThe genome‐wide association studies (GWAS) typically use linear or logistic regression models to identify associations between phenotypes (traits) and genotypes (genetic variants) of interest. However, the use of regression with the additive assumption has potential limitations. First, the normality assumption of residuals is the one that is rarely seen in practice, and deviation from normality increases the Type‐I error rate. Second, building a model based on such an assumption ignores genetic structures, like, dominant, recessive, and protective‐risk cases. Ignoring genetic variants may result in spurious conclusions about the associations between a variant and a trait. We propose an assumption‐free model built upon data‐consistent inversion (DCI), which is a recently developed measure‐theoretic framework utilized for uncertainty quantification. This proposed DCI‐derived model builds a nonparametric distribution on model inputs that propagates to the distribution of observed data without the required normality assumption of residuals in the regression model. This characteristic enables the proposed DCI‐derived model to cover all genetic variants without emphasizing on additivity of the classic‐GWAS model. Simulations and a replication GWAS with data from the COPDGene demonstrate the ability of this model to control the Type‐I error rate at least as well as the classic‐GWAS (additive linear model) approach while having similar or greater power to discover variants in different genetic modes of transmission.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3