An ensemble reconstruction of ocean temperature, salinity, and the Atlantic Meridional Overturning Circulation 1960–2021

Author:

Hermanson Leon1ORCID,Dunstone Nick1,Eade Rosie1,Smith Doug1

Affiliation:

1. Met Office UK

Abstract

AbstractOcean reanalyses covering many decades, including those with few observations, are needed to understand climate variability and to initialize and assess interannual to decadal climate predictions. The Met Office Statistical Ocean Re‐Analysis (MOSORA) exploits long‐range covariances to generate full‐depth reanalyses of monthly ocean temperature and salinity even from sparse observations. We extend MOSORA by generating an ensemble that samples uncertainties in long‐range covariances. Initial covariances are taken from model runs and these are improved with observations using an iterative process. We demonstrate that covariances are improved by iteration, and that this procedure, using very sparse observations typical of the 1960s, captures many features of analyses benefiting from modern observation density. We investigate the ensemble spread and find that salinity trends in the covariances from model runs can introduce unexpected changes in the reanalyses. We nudge the reanalyses into an ensemble of coupled climate models to produce estimates of the Atlantic Meridional Overturning Circulation (AMOC). At 26°N, the AMOC shows decadal variability consistent with observations at this latitude and shows signs of strengthening in recent years. The ensemble spread in AMOC reconstructions increases with time as more observations interact with uncertain covariances. At 45°N, the amount of decadal variability in the AMOC varies between members, but on shorter timescales the variability is similar across the ensemble. At 45°N, the AMOC can be constrained better with more observations on the western boundary, but longer continuous observations are needed to improve covariances and reduce uncertainties in the AMOC.

Funder

Department for Business, Energy and Industrial Strategy, UK Government

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiperspective view of the 1976 drought–heatwave event and its changing likelihood;Quarterly Journal of the Royal Meteorological Society;2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3