Effects of maternal exposure to procymidone on hepatic metabolism in the offspring of mice

Author:

Wang Xiaofang12,Hu Lingyu1,Jin Cuiyuan3,Qian Mingrong1,Jin Yuanxiang2ORCID

Affiliation:

1. Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou People's Republic of China

2. College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou People's Republic of China

3. Institute of Translational Medicine, Zhejiang Shuren University Hangzhou People's Republic of China

Abstract

AbstractAs an effective fungicide widely used in agricultural production, the excessive procymidone (PRO) residue has been detected in the environment and food. Our previous study demonstrated that PRO could destroy the intestinal barrier in mice and has a joint toxic effect. To explore the cross‐generational impact of maternal exposure, 10‐week‐old C57BL/6 female mice were orally administrated to 10 and 100 mg/kg body weight/day of PRO during pregnancy and lactation. The offspring obtained nutrients from the maternal through the placenta and breast milk, and PRO residues were detected in the liver, intestine, and feces of F1 generation. Fecal examination found that the residual PRO had been completely metabolized when the offspring mice grew to 35 days. The drug residue of F1 generation male mice was higher than that of female mice. We attributed this result to the difference in cytochrome P450 (CYP450) enzyme expression between male and female mice. The transcriptional levels of CYP1A1, CYP1A2, CYP2D9, and CYP3A4, and CYP450 protein expression levels, were higher in female mice. Furthermore, targeted MS of plasma revealed abnormal amino acid levels. In addition, PRO‐induced hepatic metabolite changes in F0 and F1‐7w mice. KEGG pathway analysis further showed that PRO jointly changed the amino acid biosynthesis pathway of the maternal and offspring. In summary, these results indicated that maternal exposure to PRO during a special period would interfere with self metabolism, and offspring will also have metabolic disorders.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3