Effects of Trace Additions of Magnesium on Microstructure and Properties of Fe–36Ni Invar Alloy

Author:

Wang Qi1,Dong Yanwu123ORCID,Jiang Zhouhua123,Huang Jun1

Affiliation:

1. School of Metallurgy Northeastern University Shenyang 110819 China

2. State Key Laboratory of Rolling and Automation Northeastern University Shenyang 110819 China

3. Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education) Northeastern University Shenyang 110819 China

Abstract

Low‐thermal‐expansion alloys play a crucial role in high‐precision instruments and devices. Simultaneously improving mechanical performance and keeping or even decreasing low thermal expansion behavior are urgently required for their industrial application. Herein, a new attempt to treat Fe–36Ni Invar alloy by adding trace magnesium (Mg) in a concentration ranging from 0 wt% to 0.0030 wt% (similarly hereinafter) is conducted. The introduction of Mg results in grain refinement and an increase in the volume fraction of the annealing twins. Compared with the Mg‐free sample, the coefficient of thermal expansion (CTE) of 0.0030% Mg alloy is significantly decreased by more than 20%, which is mainly related to lattice distortion and matrix purification. The yield strength of 0.0030% Mg alloy improves by 10% with respect to Mg‐free alloy, because of grain boundary strengthening and solid‐solution strengthening. The study may lay the basis for a better understanding of the application of Mg in low‐thermal‐expansion alloys.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3