Effects of Silicon and Aluminum Alloying on Phase Transformation and Microstructure Evolution in Fe–0.2C–2.5Mn Steel: Insights from Continuous–Cooling–Transformation and Time–Temperature–Transformation Diagrams

Author:

Gulbay Oguz1ORCID,Gramlich Alexander1ORCID,Krupp Ulrich1ORCID

Affiliation:

1. Steel Institute RWTH Aachen University 52072 Aachen Germany

Abstract

The impact of silicon and aluminum on phase transformation behavior, particularly bainite, and microstructure evolution in Fe–0.2C–2.5Mn steel are presented. Continuous–cooling–transformation (CCT) and time–temperature–transformation (TTT) diagrams are determined experimentally. An aluminum extended empirical formula is introduced to estimate the martensite start temperature (Ms) with a thorough assessment of existing formulae. Results show that aluminum significantly increases Ms and has a stronger influence on promoting ferritic microstructures than silicon. During continuous cooling, alongside bainite, formation of Widmanstätten structures is induced in aluminum‐alloyed steel at higher cooling rates due to increased prior austenite grain size. Silicon decelerates bainite transformation kinetics by enhancing austenite's chemical stability through carbon enrichment via preventing carbide precipitation and by strengthening austenite against displacive phase transformation via solid solution hardening. Although aluminum has similar effects, incubation time is shortened during isothermal treatment because of the increased driving force, which overcompensates for the retardation effects. A finer carbide‐free bainitic microstructure is achieved in aluminum‐alloyed steel with more pronounced film‐like retained austenite (RA) formation and superior carbon enrichment, improving RA stability and suppressing martensite–austenite island formation. Finally, with the proposed formula, an accurate approximation to experimental Ms is accomplished.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3