Prediction of Converter Tapping Weight Based on Principal Component Analysis–Whale Optimization Algorithm–Backpropagation Algorithm Neural Network Model

Author:

Xue Chao1,Xu Weili2,Bao Yanping1ORCID,Zhao Lihua3,Liu Xin1,Zheng Ruixuan1

Affiliation:

1. State Key Laboratory of Advanced Metallurgy University of Science and Technology Beijing Beijing 100083 P. R. China

2. Technology Center Jianlong Xilin Iron & Steel Co. Ltd., Yichun 153000 P. R. China

3. School of Metallurgical and Ecological Engineering University of Science and Technology Beijing Beijing 100083 P. R. China

Abstract

Tapping weight is an important parameter in converter blowing process, wherein precisely predicting the quantity of steel required in an alloy baking converter can effectively guide the requirement of alloy ingredients. In practical production, the main approach is empirical estimation, despite its low accuracy. Employing a general neural network model for prediction requires to gather the converter blowing parameters and endpoint temperature measurement sampling parameters as the model inputs. However, this data cannot be obtained until the blowing process reaches its endpoint, rendering it impractical for alloy batching that requires advance preparation for baking. In this study, a principal component analysis–whale optimization algorithm–backpropagation algorithm (PCA–WOA–BP) neural network tapping prediction model is developed using raw material parameters available before alloy baking as input. This model is integrated into the intelligent alloy reduction model of a factory. The model achieves a regression coefficient R2 of 0.823, with 98.53% of furnaces having a prediction error of less than 2 t. The tapping weight of 20 consecutive heats in actual production is predicted; the error range is less than 80% within 1 t, and the converter tapping weight is predicted accurately.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3