Cost and Life Cycle Analysis for Deep CO2 Emissions Reduction for Steel Making: Direct Reduced Iron Technologies

Author:

Zang Guiyan1ORCID,Sun Pingping1,Elgowainy Amgad1,Bobba Pallavi1,McMillan Colin2,Ma Ookie3,Podkaminer Kara3,Rustagi Neha4,Melaina Marc5,Koleva Mariya5

Affiliation:

1. Systems Assessment Center Energy Systems Division Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA

2. Strategic Energy Analysis Center Industrial Systems and Fuels Group National Renewable Energy Laboratory 901 D Street SW Suite 930 Washington DC 20024 USA

3. U.S. Department of Energy Strategic Analysis Office of Energy Efficiency and Renewable Energy 1000 Independence Ave SW Washington DC 20585 USA

4. U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office 1000 Independence Avenue SW Washington DC 20585 USA

5. U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office 15013 Denver West Parkway Golden CO 80401 USA

Abstract

Among heavy industrial sectors worldwide, the steel industry ranks first in carbon dioxide (CO2) emissions. Technologies that produce direct reduced iron (DRI) enable the industry to reduce emissions or even approach net‐zero CO2 emissions for steel production. Herein, comprehensive cradle‐to‐gate (CTG) life cycle analysis (LCA) and techno‐economic analysis (TEA) are used to evaluate the CO2 emissions of three DRI technologies. Compared to the baseline of blast furnace and basic oxygen furnace (BF–BOF) technology for steel making, using natural gas (NG) to produce DRI has the potential to reduce CTG CO2 emissions by 33%. When 83% or 100% renewable H2 is used for DRI production, DRI technologies can potentially reduce CO2 emissions by 57% and 67%, respectively, compared to baseline BF–BOF technology. However, the renewable H2 application for DRI increases the levelized cost of steel (LCOS). When renewable natural gas (RNG) and clean electricity are used for steel production, the CTG CO2 emissions of all the DRI technologies can potentially be reduced by more than 90% compared to the baseline BF–BOF technology, although the LCOS depends largely on the cost of RNG and clean electricity.

Funder

Fuel Cell Technologies Program

U.S. Department of Energy

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference49 articles.

1. Greenhouse Gas Reporting Program (GHGRP) Greenhouse Gas Reporting Program Industrial Profile: Chemicals Sector Washington DC2019.

2. World Steel Association Steel Statistical Yearbook 2020 Concise Version-A Cross-section of Steel Industry Statistics 2010-2019 Belgium2020.

3. P.Cavaliere Clean Ironmaking and Steelmaking Processes: Efficient Technologies for Greenhouse Emissions Abatement Springer Lecce Italy2019.

4. G.Zang P.Bobba P.Sun A.Elgowainy C.McMillan K.Podkaminer O.Ma K.Podkaminer N.Rustagi M.Melaina M.Koleva Cost and Life Cycle Analysis for Deep CO2 Emissions Reduction of 1 Steelmaking: BF-BOF and EAF Technologies unpublished.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3