Hydrogen‐Based Direct Reduction of Iron Oxides Pellets Modeling

Author:

Cavaliere Pasquale1ORCID,Perrone Angelo1,Marsano Debora1,Primavera Vito2

Affiliation:

1. Department of Innovation Engineering University of Salento Via per Arnesano 73100 Lecce Italy

2. EnginSoft S.p.A. Zona Industriale, Via Antonio Murri 2, Mesagne 72023 Brindisi Italy

Abstract

The present study deals with the analyses of the direct reduction kinetics during the hydrogen reduction of industrial iron oxide pellets. Various types of pellets with different percentage of total iron content and metal oxides are examined. They are reduced at different temperatures and pressure (700–1100 °C and 1–6 bar) in hydrogen atmosphere. The reduction behavior is described in terms of time to reduction, rate of reduction, and kinetics constant. All the obtained results are analyzed through the employment of a commercial multiobjective optimization tool to precisely define the weight that each single parameter has on the reduction behavior. It is shown that from the point of view of the processing conditions, temperature is the main factor influencing the time to total reduction. From the point of view of the pellets properties, it is mainly influenced by the total iron percentage and then by porosity and basicity index. Also, the kinetics behavior is largely influenced by the reduction temperature even if it is mainly governed by the porosity and pores size from the point of view of the reduced pellets. The reduction rate is also mainly influenced by temperature and then by iron percentage, gas pressure, basicity index, and porosity.

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3