Inhibition Behavior for the Oxidation of Si‐Doped Fe3O4: A Combined Ab Initio Molecular Dynamics and Experimental Study

Author:

Wang Yaozu1ORCID,Liu Xurui1,Wang Ren2ORCID,Jiang Huiqing3,Lu Lisi3,Zhang Kaifa4,Jiao Kexin3,Guo Fangyu5ORCID

Affiliation:

1. Institute of Artificial Intelligence University of Science and Technology Beijing 30th Xueyuan Road, Haidian district Beijing 100083 P. R. China

2. Guangdong Academy of Safety Science and Technology 19th Jianshe Road, Yuexiu District Guangzhou 100083 P. R. China

3. School of Metallurgical and Ecological Engineering University of Science and Technology Beijing 30th Xueyuan Road, Haidian district Beijing 100083 P. R. China

4. Jiangsu Shagang Group Huaigang Special Steel Co., Ltd. 188 Xi'an South Road Huai'an City 223002 P. R. China

5. College of Science Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha 410073 China

Abstract

The magnetite oxidation process involves magnetite surface adsorption and O2 dissociation, and the presence of impurity elements such as silicon inevitably affects the magnetite surface adsorption process. To explore and analyze the surface adsorption and oxidation behaviors of silicon‐doped Fe3O4, thermogravimetric experiments and density functional theory methods are used to investigate the physicochemical properties of this material during magnetite oxidation. The results of experiments show that with the increase of SiO2 content, the peaks of the oxidation reaction gradually migrate to the high‐temperature region, the initial oxidation temperature of the mineral increases, and the average oxidation rate decreases. The results of calculations show that when the surface system is doped with Si atoms, the relaxation time of the adsorption and dissociation of oxygen on the surface is prolonged, and the presence of Si isomerization tends to stabilize the crystal lattice structure, reduce the migration of ions, and decrease the mineral's oxidizing properties.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3