Simulation of Ladle Refining Reactions in Si–Mn‐Killed Steel

Author:

Podder Angshuman1ORCID,Coley Kenneth. S.12,Phillion André B.1

Affiliation:

1. Steel Research Centre Department of Materials Science and Engineering McMaster University 1280 Main St. W. Hamilton ON L8S 4L7 Canada

2. Department of Mechanical and Materials Engineering Western University London ON N6A 3K7 Canada

Abstract

Steel quality, to a large extent, is controlled by ladle refining reactions. The understanding of such reactions can help to prevent the formation of unwanted phases and improve the overall high‐temperature process control. A new approach, namely, the multioxide inclusion kinetic model has been recently developed to simulate steel–inclusion reactions in liquid steel. The coupling of this kinetic model with a multicomponent, multiphase steel–slag reaction interface model leads to an overall model framework to predict the evolution of steel, slag, and inclusion composition. The current work shows the application of the model to simultaneous deoxidation and desulphurization during ladle refining of Si–Mn‐killed steel. The model shows good performance with industrial data. It is demonstrated that for ladle refining practices, silica‐rich slags should be strictly used with basicity (CaO/SiO2) between 1 and 1.2 and with Al2O3 content less than 5 wt%. Additional simulations are also carried out to reveal the capability of the model to aid in online process control. Finally, certain limitations of the current model are discussed.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3