Numerical Study on the Effects of Variable Mushy Zone Constants on Fluid Flow and Heat Transfer in Bloom Mold

Author:

Yao Cheng1ORCID,Wang Min12ORCID,Cao Li3,Xing Lidong12,Li Kai3,Wang Boteng1,Song Jian3,Wei Daichun2,Bao Yanping1

Affiliation:

1. State Key Laboratory of Advanced Metallurgy University of Science and Technology Beijing Beijing 100083 China

2. Technical Support Centre for Prevention and Control of Disastrous Accidents in Metal Smelting University of Science and Technology Beijing Beijing 100083 China

3. Steelmaking and Continuous Casting Center Jianlong Acheng Iron & Steel Co., Ltd. Harbin 150000 China

Abstract

In previous studies, the mushy zone constant was assigned a fixed value or a value associated with dendrite characteristics at room temperature. However, elucidating the constitutive behaviors of mushy dendrites at high temperatures using solid dendrite characteristics at room temperature poses challenges. In this study, a numerical model was constructed to investigate the effects of variable mushy zone constants on fluid flow and heat transfer in the mold. The results revealed that “Zone Z‐1/2” exhibited a thinner solidified shell compared with the other zones, indicating a close correlation between heat transfer and thickness differences. Under default simulation conditions, the liquid steel cooled rapidly, leading to the dissipation of superheat. The mushy zone exhibited a wide range, with almost no pure liquid phase present in the mold. In cases 2, 3, and 4 within “Zone Z‐1/2”, the average thickness of the solidified shell gradually increased during solidification, indicating the absence of evident remelting phenomena in the mold. As the variable mushy zone constants increased, the local temperature gradient increased, while the local cooling rate decreased. The accuracy of the numerical model was validated through actual measurements and empirical formulas. The simulation results for case 4 exhibited a high degree of fitting.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3