Advancements in the Understanding of Single‐Bubble Dynamics: Integrated Experimental and Simulation Studies

Author:

Zhao Nannan1ORCID,Luo Zhiguo12ORCID,Zou Zongshu12

Affiliation:

1. School of Metallurgy Northeastern University Shenyang Liaoning 110819 China

2. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education) Northeastern University Shenyang Liaoning 110819 China

Abstract

Because of wake instability, bubbles always ascend along an unstable path, which is not considered when simulating their movement in steel refining and continuous casting systems. Utilizing the 3D shadow image method, a quantitative characterization of the bubble trajectories is conducted to establish a bubble path oscillation model considering the zigzag lateral movement of bubbles due to asymmetric wake shedding. This model is incorporated into a rectilinear bubble motion model within the Lagrangian framework and then used to simulate the free ascent of single bubbles within the 2.15–2.55 mm range. The predicted bubble ascent velocities and trajectories agree well with the experimental. The spatial position, velocity, acceleration, forces, volume swept by bubbles, and bubble residence time are discussed. The results shown that the dominant force in the horizontal direction is the lateral force, followed by the drag and virtual mass force. Compared to the rectilinear path model, the volume swept by bubbles with initial diameters of 2.15, 2.25, 2.34, 2.45, and 2.55 mm in this model increases by 30.8%, 32.0%, 34.0%, 31.5%, and 29.6%, respectively. These findings help accurately predict the path of bubbles and also may contribute to a better understanding of bubble dynamics in bubble metallurgy and clean steel production.

Funder

Fundamental Research Funds for Central Universities of the Central South University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3