Effect of Homogenization Treatment on Microstructure and Eutectic Precipitates in Ce‐Containing 15Cr–22Ni–1Nb Austenitic Heat‐Resistant Stainless Steel

Author:

Wang Zhongwei1,Zhu Xin1ORCID,Shi Chengbin1ORCID,Li Jing1,Ren Peng1

Affiliation:

1. State Key Laboratory of Advanced Metallurgy University of Science and Technology Beijing (USTB) Beijing 100083 China

Abstract

The effects of homogenization temperature and time on microstructure and eutectic precipitates in Ce‐containing heat‐resistant stainless steel are studied. The increase in the homogenization temperature and time promotes the diffusion of alloying elements and the transition from dendrite structure to austenitic grain. Laves phase particles are fully dissolved after the homogenization of the ingots regardless of the cerium contents and homogenization temperature and time, except for the case of the homogenization at 1130 °C for 4 h. Honeycomb Laves phases gradually dissolve and become clusters of small blocky during homogenization treatment. The amount of eutectic NbC dissolved into the matrix is increased with the increase in the homogenization temperature and time. The solubility of niobium and carbon in austenite is increased with increasing the cerium content, which is beneficial to the dissolution of eutectic NbC. The distribution homogeneity of alloying elements in the austenitic matrix is increased with the increase in the cerium content. The homogenization temperature for reaching full diffusion of alloying elements into austenitic matrix is decreased with increasing the homogenization time. The decrease in the secondary dendrite arm spacing by cerium addition is favorable to the homogenization of alloying elements during homogenization treatment.

Funder

National Natural Science Foundation of China

State Key Laboratory of Advanced Metallurgy

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3