Microstructure Evolution and Deformation Behavior of High Strength Titanium Clad Steel Plate in the Thermal Compression

Author:

Chen Xuan1,Xiao Han1ORCID,Shao Peng1,Huang Sheng1,Shi Yaming2,Liu Kun2

Affiliation:

1. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 China

2. Technology Center Yunnan Titanium Industry Co. Ltd. Chuxiong 651209 China

Abstract

This research involves conducting unidirectional axial thermal compression experiments on high‐strength titanium‐clad steel plates (TCSPs) at different temperatures and strain rates. Thermally compressed samples are evaluated for macromorphology, microstructure, macroscopic texture, and dislocation density. Deformation consistency is observed in α‐titanium under certain conditions, but not in β‐titanium. Pearlite is the main deformation microstructure near the steel interface, expanding with temperature. Striped grain clusters are observed in the α‐titanium near the interface, enhancing deformation uniformity; furthermore, the prevalence of striped grains increases with higher strain rates. However, dynamic recrystallization in β‐titanium hinderes deformation consistency. The fiber presence of texture <111>//ND ensures consistent deformation consistency, whereas the plate texture {0001} <100> in the α‐titanium encourages it. During the deformation process at a consistent rate of strain, it is observed that both matrices initially exhibit a rise, followed by a decline in dislocation density as the temperature increases, peaking at 850 °C. Dislocation density rises as strain rate increases, while temperature remaines constant. At temperatures exceeding 850 °C, bonding strengths decrease with deformation rate and remain comparable. Bonding strengths decreases at 800 °C due to intermetallic compound formation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3