Numerical Analysis and Experimental Study on Side Dam Temperature and Stress Field of Two‐Roll Casting

Author:

Zhang Yansheng1ORCID,Li Zhenlei1,Fang Feng1,Zhang Rui1,Yuan Guo1

Affiliation:

1. State Key Laboratory of Rolling and Automation Northeastern University Shenyang 110819 China

Abstract

The side sealing technology is crucial for ensuring the quality and process stability in twin‐roll casting (TRC). Investigating the temperature and stress distribution in side dams under operational conditions is vital, especially in understanding the causes of side dam fractures. Optimal performance of side dam materials is achieved when the boron nitride (BN) matrix is fine and homogeneous, with zirconium dioxide (ZrO2) and silicon carbide (SiC) particles evenly dispersed throughout. The fracture of the side dam after casting is mainly caused by BN interlamellar tear. The coexistence of BN lamellar tearing and BN layer fracture leads to the fracture of the side dam during the casting process. Through finite element simulation, the effects of variables such as pouring temperature, preheating temperature, and side dam thickness on temperature and stress distribution were analyzed. The findings indicate that a preheating temperature range of 1200–1300 °C minimizes thermal stress in the side dam. Building on these findings, a composite structure for the side dam is developed. Both internal and external composite structures have shown significant effectiveness in reducing thermal stress. These results are pivotal in extending the service life of side dams and enhancing the stability of the TRC process.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3