Numerical Simulation and Experimental Research on the Quenching Process of 1045 Steel Based on Thermo–Fluid–Solid Coupling Model

Author:

Liu Ganhua1ORCID,Deng Shiyi1,Huo Xiaodong1

Affiliation:

1. School of Mechanical and Electrical Engineering Jiangxi University of Science and Technology Ganzhou Jiangxi 341000 China

Abstract

In the numerical simulation research on quenching, the heat transfer coefficient is an important input parameter. However, owing to its complexity and various influencing factors, the measured results are not universal and will significantly increase the simulation complexity and error. This article proposes a new numerical simulation method for quenching processes by extending the simulation domain and introducing the coupled heat exchange between the liquid quenching medium and workpiece, replacing the role of the heat transfer coefficient in the numerical simulation. The method is validated through experimental studies on 1045 steel rod quenched in water, with the maximum relative errors of the simulation results compared to the experimental results being 3.6%, 9%, and 5.1% for hardness, cooling curve, and residual stress, respectively. Furthermore, the article investigates the effect of different flow parameters of quenching media on the quenching effect. Under the studied conditions, the 1045 steel rod has the lowest risk of cracking and the highest hardness value when quenched in water at 50 °C. The proposed method improves the universality and convenience of numerical simulation for the quenching process and can be used to guide the formulation of quenching process parameters when the heat transfer coefficient is unknown.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3