Investigation of Inclusion Removal at Steel–Slag Interface toward a Small‐Scale Criterion for Particle Separation

Author:

Zhang Xiaomeng12ORCID,Pirker Stefan2,Saeedipour Mahdi2

Affiliation:

1. K1-MET GmbH Stahlstrasse 14 4020 Linz Austria

2. Department of Particulate Flow Modelling Johannes Kepler University 4040 Linz Austria

Abstract

Interactions between inclusion particles and the steel–slag interface directly affect the inclusion removal efficiency and thus influence steel cleanliness. Herein, the three‐phase interactions are resolved using the volume of fluid (VOF) method coupled with a dynamic overset mesh. The simulation is able to capture the instantaneous interface deformation and predict the particle motion driven by capillary force. The model validity is first demonstrated by comparison with analytical results. Then, a parameter study is conducted to examine the most influential factors governing the separation process. The results show that the system's wetting condition and the slag viscosity have a decisive effect on particle behavior at the interface (separation or entrapment). From an energy perspective, a better wetting condition generates more energy sources, and the interfacial energy is efficiently transformed into the particle's kinetic energy within a less viscous environment, thus leading to better separation. Besides, a criterion for predicting particle behavior is developed based on a modified Reynolds number (, relevant to fluid properties) and a quantity related to particle dynamics (ζ). The current work brings insights into the interfacial phenomenon during inclusion removal, which can be incorporated into large‐scale simulations to estimate the removal efficiency more accurately.

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3