Effect of Second Phase on the Tensile Properties of a High‐Mn High‐Al Austenitic Lightweight Steel Processed by Thin‐Strip Casting

Author:

Ji Fengqin1ORCID,Li Chengning2ORCID,Song Wenwen3ORCID,Bleck Wolfgang4,Wang Guodong5

Affiliation:

1. College of Aeronautical Engineering Civil Aviation University of China Tianjin 300300 China

2. School of Materials Science and Engineering Tianjin University Tianjin 300350 China

3. Institute of Materials Engineering University of Kassel 34125 Kassel Germany

4. Steel Institute RWTH Aachen University 52072 Aachen Germany

5. State Key Laboratory of Rolling and Automation Northeastern University Shenyang 110819 China

Abstract

The effects of the second phase on the tensile properties of a high‐Mn high‐Al austenitic lightweight steel processed by thin‐strip casting and subsequently aged at 600 °C for different times are studied. Depending on the aging time, the second phase includes short‐range ordered (SRO) phase, nanosized κ phase, and/or microsized κ phase. At aging time of 1 min, the 2 nm SRO phase precipitates and evolves into 6 nm intragranular κ phase when the time is 60 min, and microsized intergranular κ phases exist at austenite grain boundaries at aging time of 480 min. The precipitation of SRO phase increases the yield strength from 470 to 610 MPa, and the elongation only decreases from 55.9% to 52.1%, with ductile fracture for 380 MJ m−3. Although the precipitation of intragranular κ phase increases the yield strength to 910 MPa, but elongation decreases to 33.4%, there is a mixture of ductile and brittle fracture for 316 MJ m−3. The presence of intergranular κ phase increases the yield strength to 960 MPa, but reduces the elongation to only 3.6% with brittle fracture for 35 MJ m−3. All the second phases reduce strain hardening rate, and SRO has smaller effect.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3