Study on Microstructure and Properties of Cold Metal Transfer and Pulse Hybrid Welded Super Duplex Stainless Steel

Author:

Zhang Zhiqiang12,He Jiahuan1,Lu Xuecheng1,Bai Yujie34ORCID,Xu Lianyong3,Wu Dongquan5,Qu Sicheng1,Han Yongdian3ORCID

Affiliation:

1. College of Aeronautical Engineering Civil Aviation University of China Tianjin 300300 China

2. School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore 639798 Singapore

3. School of Materials Science and Engineering Tianjin University Tianjin 300350 China

4. School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China

5. Sino‐European Institute of Aviation Engineering Civil Aviation University of China Tianjin 300300 China

Abstract

The investigation focuses on the microstructure, impact toughness, and pitting corrosion resistance of cold metal transfer and pulse hybrid welded joints of unified numbering system (UNS) S32750 duplex stainless steel. The results show that the filler pass exhibits the highest austenite ratio (47.9%), whereas the heat‐affected zone (HAZ) shows the lowest (32.3%). Notably, secondary austenite (γ2) is present in both the backing pass and HAZ, but conspicuously absent in the filler pass, indicating that reheating from subsequent weld pass is a prerequisite for the precipitation of γ2. Additionally, chromium nitride (Cr2N) also precipitates in the HAZ and backing pass. Comparative analysis with the weld metal (WM) and base metal (BM) indicates that the HAZ displays lower impact toughness, primarily attributing to imbalanced phase ratio, coarse ferrite grains and the brittle Cr2N. Owing to the lower austenite content and Cr2N precipitation in the backing pass, its toughness (122.6 J cm−2) is found to be inferior to that of the filler pass (130.1 J cm−2). Furthermore, the HAZ with a lower critical pitting temperature compared to the WM (79.1 °C) and BM (87 °C), and exhibits the worst pitting corrosion resistance due to the abundant precipitation of secondary phases and excessive ferrite with low pitting resistance equivalent number.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3