Effect of Mold Electromagnetic Stirring on Metallurgical Behavior in Ultrahigh Speed Continuous Casting Billet Mold

Author:

Li Xintao1ORCID,Zhang Zhaohui1,Lv Ming1ORCID,Fang Ming1,Ma Shaobo1,Li Donglin2,Xi Xiaofeng3

Affiliation:

1. School of Metallurgical Engineering Xi'an University of Architecture and Technology Xi'an Shaanxi 710055 China

2. Steelmaking Engineering Division China National Heavy Machinery Research Institute Co., Ltd. Xi'an Shaanxi 710018 China

3. Steelmaking Plant Shaanxi Longmen Iron and Steel Co., Ltd. Hancheng Shaanxi 715405 China

Abstract

A three‐dimensional model of fluid flow, heat transfer, solidification, and inclusion motion in billet mold at ultrahigh casting speed under electromagnetic field is developed. The low Reynolds number kε model coupled with electromagnetic model and Lagrangian discrete phase model is used to investigate the flow field, temperature field, solidification, and inclusions transport under different current intensities. The results show that mold electromagnetic stirring (M‐EMS) significantly alters the flow pattern of molten steel. The impact depth of the molten steel decreases as the stirring current intensity increases, and the horizontal swirl intensities of the molten steel increase with the stirring current intensity. As the current intensity increases from 500 to 700 A, the impact depth decreases from 0.637 to 0.575 m and the maximum tangential velocity increases from 0.477 to 0.898 m s−1. When the stirring current is intense, the flow of molten steel near the mold exit is reversed, and the molten steel flows asymmetrically and unsteadily. The M‐EMS effectively improves the transverse heat transfer of the molten steel in the mold, contributing to the dissipation of the molten steel superheat and the growth of the solidified shell. In addition, the removal ratio of the inclusions is improved significantly.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3