Affiliation:
1. Department of Mathematics Kunming University of Science and Technology Kunming People's Republic of China
Abstract
In this paper, we consider a diffusive predator–prey model with spatial memory of prey and gestation delay of predator. For the system without delays, we study the stability of the positive equilibrium in the case of diffusion and no diffusion, respectively. For the delayed model without diffusions, the existence of Hopf bifurcation is discussed. Further, we investigate the stability switches of the model with delays and diffusions when two delays change simultaneously by calculating the stability switching curves and obtain the existence of Hopf bifurcation. We also calculate the normal form of Hopf bifurcation to determine the direction of Hopf bifurcation and the stability of bifurcation periodic solutions. Finally, numerical simulations verify the theoretical results.
Funder
National Natural Science Foundation of China