Radiogenomics uncovers an interplay between angiogenesis and clinical outcomes in bladder cancer

Author:

Xu Chentao1,Cao Jincheng1,Zhou Tianjin1ORCID

Affiliation:

1. Radiology Department Changxing People's Hospital Huzhou China

Abstract

AbstractBackgroundPrecision medicine has become a promising clinical treatment strategy for various cancers, including bladder cancer, where angiogenesis plays a critical role in cancer progression. However, the relationship between angiogenesis, immune cell infiltration, clinical outcomes, chemotherapy, and targeted therapy remains unclear.MethodsWe conducted a comprehensive evaluation of angiogenesis‐related genes (ARGs) to identify their association with immune cell infiltration, transcription patterns, and clinical outcomes in bladder cancer. An ARG score was constructed to identify angiogenic subgroups in each sample and we evaluated their predictive performance for overall survival rate and treatment response. In addition, we optimized existing clinical detection protocols by performing image data processing.ResultsOur study revealed the genomic‐level mutant landscape and expression patterns of ARGs in bladder cancer specimens. Using analysis, we identified three molecular subgroups where ARG mutations correlated with patients' pathological features, clinical outcomes, and immune cell infiltration. To facilitate clinical applicability, we constructed a precise nomogram based on the ARG score, which significantly correlated with stem cell index and drug sensitivity. Finally, we proposed the radiogenomics model, which combines the precision of genomics with the convenience of radiomics.ConclusionOur study sheds light on the prognostic characteristics of ARGs in bladder cancer and provides insights into the tumor environment's characteristics to explore more effective immunotherapy strategies. The findings have significant implications for the development of personalized treatment approaches in bladder cancer and pave the way for future studies in this field.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3