Fluorescent properties of marine phytoplankton exudates and lability to marine heterotrophic prokaryotes degradation

Author:

Bachi Giancarlo1,Morelli Elisabetta1,Gonnelli Margherita1,Balestra Cecilia2,Casotti Raffaella3,Evangelista Valtere1,Repeta Daniel J.4,Santinelli Chiara15ORCID

Affiliation:

1. Istituto di Biofisica, CNR Pisa Italy

2. Istituto Nazionale di Oceanografia e Geofisica Sperimentale Sgonico, TS Italy

3. Stazione Zoologica Anton Dohrn Naples Italy

4. Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution Woods Hole Massachusetts USA

5. National Biodiversity Future Center (NBFC) Palermo Italy

Abstract

AbstractExudates by the diatom Phaeodactylum tricornutum were incubated with a natural community of marine heterotrophic prokaryotes for 24 d in order to investigate the link between the biological lability and the molecular weight, fluorescence, and polarity of phytoplankton dissolved organic matter (DOM). Dissolved organic carbon (DOC) removal, changes in fluorescence and in the heterotrophic prokaryote abundance were followed over time both in the total exudates and in the low‐ and high‐molecular‐weight fractions. To detect changes in the polarity of proteins, reverse‐phase high‐performance liquid chromatography (HPLC) was applied to the high‐molecular‐weight fraction. Our results indicate that freshly produced phytoplankton DOM exhibits a dynamic pattern of degradation that is accompanied by large changes in the growth efficiency of the bacterial community that are likely related to changes in DOM quality. Approximately 20% of high‐molecular‐weight DOM and 40% of fluorescence attributed to protein‐like DOM were degraded over the first days of the incubation indicating that protein‐like DOM is likely a labile component of phytoplankton exudates. In contrast, fluorescence measurements suggest that humic‐like substances are resistant to bacterial degradation over the 24 d of the experiment. Despite fluctuations in the short‐term rates of high‐molecular‐weight and low‐molecular‐weight DOM removal, the relative contributions of these fractions to DOM pool were similar in the fresh exudates and at the end of our incubation experiments.

Funder

Consiglio Nazionale delle Ricerche

Gordon and Betty Moore Foundation

Simons Foundation

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3