Multi‐dimensional niche differentiation of two sympatric breeding secondary cave‐nesting birds in Northeast China using DNA metabarcoding

Author:

Zhang Li12ORCID,Liu Zhenyun12,Sun Keping2ORCID,Jin Longru12,Yu Jiangping12,Wang Haitao12ORCID

Affiliation:

1. Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences Northeast Normal University Changchun China

2. Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China

Abstract

AbstractNiche theory predicts that ecologically similar sympatric species should show differentiation in at least one of the main niche dimensions (time, space, and/or food). Here, we combined observations of breeding timing, nest site selection, and diet (the latter determined using DNA metabarcoding) to analyze the niche overlap and differentiation between two sympatric secondary cavity‐nesting birds, the Japanese Tit Parus minor and the Yellow‐rumped Flycatcher Ficedula zanthopygia. The results showed that (1) there were significant differences in the first egg laying date, length of the egg laying period, incubation date, and hatching date between tits and flycatchers, and the breeding time of flycatchers peaked later (about 30 days) than that of tits; (2) the two species had a large overlap in nest site selection, although the canopy coverage and shrub density of flycatchers were significantly higher than those of tits; and (3) the niche overlap in diet was minimal, with both species heavily relying on Lepidoptera (39.6% and 63.7% for tits and flycatchers, respectively), but with flycatchers consuming significantly higher percentages of Lepidoptera, Diptera, and Coleoptera than tits. The results indicate that these two sympatric secondary cavity‐nesting species have significant niche differentiation in breeding time and diet, but little differentiation in nest site selection.

Funder

Natural Science Foundation of Jilin Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3