Influence of dams on sauger population structure and hybridization with introduced walleye

Author:

Rosenthal William C.12ORCID,Mandeville Elizabeth G.13,Pilkerton Ashleigh M.245ORCID,Gerrity Paul C.6,Skorupski Joseph A.6,Walters Annika W.2457ORCID,Wagner Catherine E.12

Affiliation:

1. Department of Botany University of Wyoming Laramie Wyoming USA

2. Program in Ecology University of Wyoming Laramie Wyoming USA

3. Department of Integrative Biology University of Guelph Guelph Ontario Canada

4. Department of Zoology and Physiology University of Wyoming Laramie Wyoming USA

5. Wyoming Cooperative Fish and Wildlife Research Unit University of Wyoming Laramie Wyoming USA

6. Wyoming Game and Fish Department Cheyenne Wyoming USA

7. U.S. Geological Survey Reston Virginia USA

Abstract

AbstractDams have negatively affected freshwater biodiversity throughout the world. These negative effects tend to be exacerbated for aquatic taxa with migratory life histories, and for taxa whose habitat is fundamentally altered by the formation of large reservoirs. Sauger (Sander candadensis; Percidae), large‐bodied migratory fishes native to North America, have seen population declines over much of the species' range, and dams are often implicated for their role in blocking access to spawning habitat and otherwise negatively affecting river habitat. Furthermore, hybridization appears to be more frequent between sauger and walleye in the reservoirs formed by large dams. In this study, we examine the role of dams in altering sauger population connectivity and facilitating hybridization with introduced walleye in Wyoming's Wind River and Bighorn River systems. We collected genomic data from individuals sampled over a large spatial scale and replicated sampling throughout the spawning season, with the intent to capture potential variation in hybridization prevalence or genomic divergence between sauger with different life histories. The timing of sampling was not related to hybridization prevalence or population divergence, suggesting limited genetic differences between sauger spawning in different time and places. Overall, there was limited hybridization detected, however, hybridization was most prevalent in Boysen Reservoir (a large impounded section of the Wind River). Dams in the lower Wind River and upper Bighorn River were associated with population divergence between sauger upstream and downstream of the dams, and demographic models suggest that this divergence has occurred in concordance with the construction of the dam. Sauger upstream of the dams exhibited substantially lower estimates of genetic diversity, which implies that disrupted connectivity between Wind River and Bighorn River sauger populations may already be causing negative demographic effects. This research points towards the importance of considering the evolutionary consequences of dams on fish populations in addition to the threats they pose to population persistence.

Funder

Wyoming Game and Fish Department

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3