On Hausdorff operators in ZF$\mathsf {ZF}$

Author:

Keremedis Kyriakos1,Tachtsis Eleftherios2ORCID

Affiliation:

1. Department of Mathematics University of the Aegean Greece

2. Department of Statistics and Actuarial‐Financial Mathematics University of the Aegean Greece

Abstract

AbstractA Hausdorff space is called effectively Hausdorff if there exists a function F—called a Hausdorff operator—such that, for every with , , where U and V are disjoint open neighborhoods of x and y, respectively. Among other results, we establish the following in , i.e., in Zermelo–Fraenkel set theory without the Axiom of Choice (): is equivalent to “For every set X, the Cantor cube is effectively Hausdorff”. This enhances the result of Howard, Keremedis, Rubin and Rubin [13] that is equivalent to “Hausdorff spaces are effectively Hausdorff” in . The Boolean Prime Ideal Theorem and the statement “For every infinite set X, the Stone space of the Boolean algebra is effectively Hausdorff” are mutually independent. In particular, the latter statement is not provable in . The Axiom of Choice for non‐empty subsets of () is equivalent to each of “Separable Hausdorff spaces are effectively Hausdorff” and “The Cantor cube is effectively Hausdorff”. The Principle of Dependent Choices in conjunction with the Axiom of Choice for continuum sized families of non‐empty subsets of does not imply the axiom of choice for partitions of . The latter independence result fills the gap in information in Howard and Rubin's book “Consequences of the Axiom of Choice”. The axiom of countable choice for non‐empty subsets of is equivalent to each of “Denumerable Hausdorff spaces are effectively Hausdorff”, “Denumerable T3 spaces are completely normal” and “Denumerable Tychonoff spaces are Urysohn”.

Publisher

Wiley

Subject

Logic

Reference31 articles.

1. A model without ultrafilters;Blass A.;Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys.,1977

2. N.Bourbaki Elements of Mathematics.General Topology. Part I(Hermann Paris;Addison‐Wesley Reading MA 1966).

3. Geordnete Läuchli Kontinuen

4. Discrete subspaces of Hausdorff spaces;De Groot J.;Bull. Acad. Polon. Sci.,1965

5. Sigma Series in Pure Mathematics;Engelking R.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3