Interfacial tailoring of basalt fiber/epoxy composites by metal–organic framework based oil containers for promoting its mechanical and tribological properties

Author:

Li Menghan1,Pan Bingli1,Liu Hongyu1ORCID,Zhu Liming1,Fan Xiaobing1,Yue Enxi1,Li Ming1,Qin Yibo1

Affiliation:

1. School of Chemistry and Chemical Engineering Henan University of Science and Technology Luoyang People's Republic of China

Abstract

AbstractThe chemical inertness of the basalt felt (BF) results in a weak interface bonding between BF and polymer matrix, which hinders the further application of BF reinforced composites. In this study, nickel‐based metal–organic framework (Ni‐MOF) sheets were decorated on the surface of BF by a facile one‐step hydrothermal method to improve the interfacial bonding between BF and epoxy resin (EP) matrix and embed solid paraffin. The mechanical and tribological properties of EP composites reinforced with BF were evaluated. The interfacial shear strength (IFSS) between BF and EP was measured by a single‐fiber drawing test, and the results indicated that the IFSS increased by 15.19% after MOF modification. The surface of BF transformed from hydrophilicity to hydrophobicity, therefore significantly improving the compatibility between EP and BF. Compared with pure EP, the composites exhibited improvements of 37.55% and 203.39% in tensile strength and tensile modulus, respectively. Meanwhile, the friction coefficient and specific wear rate of the composite decreased by 58.82% and 56.50%, respectively. The solid paraffin was observed to be enclosed by Ni‐MOF sheets, which endowed the composite with a self‐lubricating behavior during friction. This study will advance the comprehensive performance of EP and provide a versatile strategy for tuning the interface compatibility between the reinforcement material and the matrix.Highlights A novel Ni‐MOF decorated BF was developed for storage of PW. The BF/MOF/PW can simultaneously boost the tribological and mechanical properties of EP. Surface tailoring of BF was realized with decorating MOF sheets and embedding PW. A decline in friction coefficient by 58.82% was achieved.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3