A coupled phase‐field method (PFM) and thermo‐hydro‐mechanics (THM) based framework for analyzing saturated ice‐rich porous materials

Author:

Kebria Mahyar Malekzade1,Na SeonHong12ORCID

Affiliation:

1. Department of Civil Engineerin McMaster University Hamilton Ontario Canada

2. Department of Civil Engineering Inha University Incheon South Korea

Abstract

AbstractThis study proposes a novel framework for ice‐rich saturated porous media using the phase‐field method (PFM) coupled with a thermo‐hydro‐mechanical (THM) formulation. By incorporating the PFM and THM approaches based on the continuum theory, we focus on the mechanical responses of fully saturated porous media under freeze‐thaw conditions. The phase transition between liquid water and crystalline ice can be explicitly expressed as captured by evaluating the internal energy and implementing thermal, mechanical, and hydraulic couplings at a diffused interface using PFM. Accurately modeling the coupled mechanical behaviors of ice and soil presents significant challenges. Therefore, in previous numerical frameworks, ad hoc constitutive models were adopted to phenomenologically estimate the overall behavior of frozen soil. To address this, we employ a method that differentiates between the kinematics of the solid and ice constituents, enabling our framework to accommodate distinct constitutive models for each constituent. Within this framework, we naturally introduce anisotropy of frozen soil as it undergoes the freezing process by integrating a transversely isotropic plastic constitutive model for ice. We illustrate the capabilities of our proposed approach through numerical examples, demonstrating its effectiveness in modeling the phase transition process and revealing the overall anisotropic responses of frozen soil.

Funder

Inha University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3