A Genetic Strategy for Single and Combinatorial Analysis of miRNA Function in Mammalian Hematopoietic Stem Cells

Author:

Papapetrou Eirini P.12,Korkola James E.3,Sadelain Michel12

Affiliation:

1. Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA

2. Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA

3. Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA

Abstract

Abstract The regulatory role of micro-RNAs (miRNAs) in hematopoietic development is increasingly appreciated. Reverse genetics strategies based on the targeted disruption of miRNAs offer a powerful tool to study miRNA functions in mammalian hematopoiesis. The miR-144/451 cluster comprises two miRNAs coexpressed from a common precursor transcript in an erythroid-specific manner. To decipher the contribution of each miRNA of the cluster in mammalian erythropoiesis, we developed a strategy for stable in vivo individual and combinatorial miRNA inhibition. We developed decoy target sequences for each miRNA expressed by lentiviral vectors marked with distinct fluorescent proteins and used them to probe the functions of miR-144 and miR-451 in the murine hematopoietic system in a competitive repopulation setting. Murine hematopoietic chimeras expressing lentiviral-encoded inhibitory sequences specific for miR-144 or miR-451 exhibited markedly reduced Ter119+ erythroblast counts, with the combined knockdown showing additive effect. These chimeras showed abnormal patterns of erythroid differentiation primarily affecting the proerythroblast to basophilic erythroblast transition, coinciding with the stage where expression of the miRNA cluster is dramatically induced and posttranscriptional gene regulation becomes prominent. These results reveal a role for the miR-144/451 locus in mammalian erythropoiesis and provide the first evidence of functional cooperativity between clustered miRNAs in the hematopoietic system. The strategy described herein will prove useful in functional miRNA studies in mammalian hematopoietic stem cells.

Funder

NIH

New York State Stem Cell Science

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3