Facile synthesis of ZIF‐67@PVA/CA nanofibrous aerogel as efficient and recyclable catalyst for the degradation of organic pollutants through peroxymonosulfate activation

Author:

Jiang Guojun1,Wang Jiajun1,Song Yuanyuan1,Chen Weizhong1,Ye Yvnuo1,Zeng Xingyao1,Feng Yujie1,Zhang Caidan2ORCID,Zhang Sai3,Ye Xiangyu4

Affiliation:

1. Zhijiang College Zhejiang University of Technology Shaoxing China

2. College of Materials and Textile Engineering & Nanotechnology Research Institute Jiaxing University Jiaxing China

3. College of Textile and Clothing Dezhou University Dezhou China

4. Zhejiang Light Industrial Products Inspection and Research Institute Hangzhou China

Abstract

AbstractMetal–organic frameworks (MOFs) are one of the most promising advanced heterogeneous catalysts for the activation of peroxymonosulfate (PMS) to degrade organic contaminants in water, and have been extensively studied. However, MOFs in powder form usually have the disadvantage of poor separation and regeneration, making it significantly challenging for practical applications. In this study, ultralight zeolitic imidazolate framework‐67@poly(vinyl alcohol)/citric acid nanofibrous aerogel (ZIF‐67@PVA/CA NFA) was prepared by a convenient and facile in‐situ growth method and it had excellent catalytic efficiency and recyclability. The factors affecting the activation of PMS by ZIF‐67@PVA/CA NFA, such as PMS concentration, reaction temperature, solution pH, and organic pollutant concentration, were investigated. Taking advantage of the distinctive structural characteristics of MOF and nanofibrous aerogels, the obtained ZIF‐67@PVA/CA NFA exhibited ultralow density, hierarchical porosity, remarkably high catalytic activity for activation of PMS for the degradation of organic pollutants. Furthermore, ZIF‐67@PVA/CA NFA also displayed excellent recyclability along with retention of high catalytic stability. The present study provides a new strategy for the efficient fabrication of three‐dimensional heterogeneous catalyst for the activation of PMS, with great potential in wastewater treatment.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3