Affiliation:
1. State and Local Joint Engineering Laboratory for Novel Functional Polymeric Material, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
Abstract
AbstractDeveloping photothermal anti/deicing fluor‐free composite coatings with high wear resistance and liquid puncture resistance is an interesting challenge. Herein, a new biomass benzoxazine monomer (C‐d) was synthesized, which was then sprayed on a glass slide, followed by spraying hyperbranched polysiloxane (HSi), polydopamine‐coated micro AlN (P@mAlN), and polydopamine‐coated nano AlN (P@nAlN), successively, to develop a new type of photothermal anti/deicing four‐layer fluor‐free composite coatings with high wear resistance and liquid puncture resistance (C‐d/yHSi/0.4P@2bAlN, y is the mass ratio of HSi to C‐d). Three‐layer composite coatings (C‐d/0.4P@zbAlN, z is the mass ratio of P@mAlN to P@nAlN) and two‐layer composite coatings (C‐d/xP@mAlN, x is the mass ratio of P@mAlN to C‐d) were also prepared to study the influence of compositions on comprehensive properties of coatings. The results show that C‐d/0.4P@zbAlN has significantly longer icing delay time (IDT) than C‐d and C‐d/xP@mAlN coatings but still shows poor wear resistance and liquid puncture resistance. Interestingly, C‐d/yHSi/0.4P@2bAlN coatings have good superhydrophobicity; as y increases, both IDT and wear resistance increase significantly. When y = 0.5, the obtained C‐d/0.5HSi/0.4P@2bAlN coating has the best integrated performance, including high anti‐deicing property (IDT = 627 s), high wear resistance, and liquid puncture resistance as well as good photothermal deicing performance, the ice melts in 343 s under the irradiation with 808 nm infrared light, overcoming the bottleneck of poor wear resistance and liquid puncture resistance of photothermal anti/deicing coatings. Besides, C‐d/0.5HSi/0.4P@2bAlN coating can effectively prevent the adhesion of pollutants and remain superhydrophobicity after soaked in different solutions (pH = 1–10).Highlights
A new biomass benzoxazine with good flexibility was synthesized.
Photo‐thermal anti/deicing coatings with micro/nanostructured surfaces are built.
The fluor‐free coatings have excellent wear resistance and chemical resistance.
The mechanism behind was elucidated.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献