The effects of intra‐detector Compton scatter on low‐frequency DQE for photon‐counting CT using edge‐on‐irradiated silicon detectors

Author:

Grönberg Fredrik12,Yin Zhye3,Maltz Jonathan S.4,Pelc Norbert J.5,Persson Mats67

Affiliation:

1. Department of Physics, KTH Royal Institute of Technology AlbaNova University Center Stockholm Sweden

2. GE HealthCare Stockholm Sweden

3. GE HealthCare New York USA

4. GE HealthCare Waukesha Wisconsin USA

5. Department of Radiology Stanford University Stanford California USA

6. Department of Physics KTH Royal Institute of Technology, AlbaNova University Center Stockholm Sweden

7. MedTechLabs Karolinska University Hospital Stockholm Sweden

Abstract

AbstractBackgroundEdge‐on‐irradiated silicon detectors are currently being investigated for use in full‐body photon‐counting computed tomography (CT) applications. The low atomic number of silicon leads to a significant number of incident photons being Compton scattered in the detector, depositing a part of their energy and potentially being counted multiple times. Even though the physics of Compton scatter is well established, the effects of Compton interactions in the detector on image quality for an edge‐on‐irradiated silicon detector have still not been thoroughly investigated.PurposeTo investigate and explain effects of Compton scatter on low‐frequency detective quantum efficiency (DQE) for photon‐counting CT using edge‐on‐irradiated silicon detectors.MethodsWe extend an existing Monte Carlo model of an edge‐on‐irradiated silicon detector with 60 mm active absorption depth, previously used to evaluate spatial‐frequency‐based performance, to develop projection and image domain performance metrics for pure density and pure spectral imaging tasks with 30 and 40 cm water backgrounds. We show that the lowest energy threshold of the detector can be used as an effective discriminator of primary counts and cross‐talk caused by Compton scatter. We study the developed metrics as functions of the lowest threshold energy for root‐mean‐square electronic noise levels of 0.8, 1.6, and 3.2 keV, where the intermediate level 1.6 keV corresponds to the noise level previously measured on a single sensor element in isolation. We also compare the performance of a modeled detector with 8, 4, and 2 optimized energy bins to a detector with 1‐keV‐wide bins.ResultsIn terms of low‐frequency DQE for density imaging, there is a tradeoff between using a threshold low enough to capture Compton interactions and avoiding electronic noise counts. For 30 cm water phantom, 4 energy bins, and a root‐mean‐square electronic noise of 0.8, 1.6, and 3.2 keV, it is optimal to put the lowest energy threshold at 3, 6, and 1 keV, which gives optimal projection‐domain DQEs of 0.64, 0.59, and 0.52, respectively. Low‐frequency DQE for spectral imaging also benefits from measuring Compton interactions with respective optimal thresholds of 12, 12, and 13 keV. No large dependence on background thickness was observed. For the intermediate noise level (1.6 keV), increasing the lowest threshold from 5 to 35 keV increases the variance in a iodine basis image by 60%–62% (30 cm phantom) and 67%–69% (40 cm phantom), with 8 bins. Both spectral and density DQE are adversely affected by increasing the electronic noise level. Image‐domain DQE exhibits similar qualitative behavior as projection‐domain DQE.ConclusionsCompton interactions contribute significantly to the density imaging performance of edge‐on‐irradiated silicon detectors. With the studied detector topology, the benefit of counting primary Compton interactions outweighs the penalty of multiple counting at all lowest threshold energies. Compton interactions also contribute significantly to the spectral imaging performance for measured energies above 10 keV.

Funder

H2020 Marie Skłodowska-Curie Actions

Vetenskapsrådet

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3