Harmonizing florbetapir and PiB PET measurements of cortical Aβ plaque burden using multiple regions‐of‐interest and machine learning techniques: An alternative to the Centiloid approach

Author:

Chen Kewei1234ORCID,Ghisays Valentina12ORCID,Luo Ji12ORCID,Chen Yinghua12ORCID,Lee Wendy12,Wu Teresa56ORCID,Reiman Eric M.1278ORCID,Su Yi12456ORCID

Affiliation:

1. Banner Alzheimer's Institute Phoenix Arizona USA

2. Arizona Alzheimer's Consortium Phoenix Arizona USA

3. School of Mathematics and Statistical Sciences College of Health Solutions Arizona State University Tempe Arizona USA

4. Department of Neurology College of Medicine‐Phoenix University of Arizona Phoenix Arizona USA

5. ASU‐Mayo Center for Innovative Imaging Arizona State University Tempe Arizona USA

6. School of Computing and Augmented Intelligence Arizona State University Tempe Arizona USA

7. ASU‐Banner Neurodegenerative Disease Research Center Arizona State University Tempe Arizona USA

8. Department of Psychiatry University of Arizona Phoenix Arizona USA

Abstract

AbstractINTRODUCTIONMachine learning (ML) can optimize amyloid (Aβ) comparability among positron emission tomography (PET) radiotracers. Using multi‐regional florbetapir (FBP) measures and ML, we report better Pittsburgh compound‐B (PiB)/FBP harmonization of mean‐cortical Aβ (mcAβ) than Centiloid.METHODSPiB‐FBP pairs from 92 subjects in www.oasis‐brains.org and 46 in www.gaain.org/centiloid‐project were used as the training/testing sets. FreeSurfer‐extracted FBP multi‐regional Aβ and actual PiB mcAβ in the training set were used to train ML models generating synthetic PiB mcAβ. The correlation coefficient (R) between the synthetic/actual PiB mcAβ in the testing set was assessed.RESULTSIn the testing set, the synthetic/actual PiB mcAβ correlation R = 0.985 (R2 = 0.970) using artificial neural network was significantly higher (p ≤ 6.6e‐4) than the FBP/PiB correlation R = 0.927 (R2 = 0.860), improving total variance percentage (R2) from 86% to 97%. Other ML models such as partial least square, ensemble, and relevance vector regressions also improved R (p = 9.677e−05/0.045/0.0017).DISCUSSIONML improved mcAβ comparability. Additional studies are needed for the generalizability to other amyloid tracers, and to tau PET.Highlights Centiloid is a calibration of the amyloid scale, not harmonization. Centiloid unifies the amyloid scale without improving inter‐tracer association (R2). Machine learning (ML) can harmonize the amyloid scale by improving R2. ML harmonization maps multi‐regional florbetapir SUVRs to PiB mean‐cortical SUVR. Artificial neural network ML increases Centiloid R2 from 86% to 97%.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3