A Delaunay refinement algorithm for the particle finite element method applied to free surface flows

Author:

Leyssens Thomas1ORCID,Henry Michel1,Lambrechts Jonathan1,Remacle Jean‐François1

Affiliation:

1. Institute of Mechanics Materials and Civil Engineering, Université Catholique de Louvain Louvain‐la‐Neuve Belgium

Abstract

AbstractThis article proposes two contributions to the calculation of free‐surface flows using the particle finite element method (PFEM). The PFEM is based upon a Lagrangian approach: a set of particles defines the fluid and each particle is associated with a velocity vector. Then, unlike a pure Lagrangian method, all the particles are connected by a triangular mesh. The difficulty lies in locating the free surface from this mesh. It is a matter of deciding which of the elements in the mesh are part of the fluid domain, and to define a boundary—the free surface. Then, the incompressible Navier–Stokes equations are solved on the fluid domain and the particle position is updated using the velocity vector from the finite element solver. Our first contribution is to propose an approach to adapt the mesh with theoretical guarantees of quality: the mesh generation community has acquired a lot of experience and understanding about mesh adaptation approaches with guarantees of quality on the final mesh. The approach we use here is based on a Delaunay refinement strategy, allowing to insert and remove nodes while gradually improving mesh quality. We show that what is proposed allows to create stable and smooth free surface geometries. One characteristic of the PFEM is that only one fluid domain is modeled, even if its shape and topology change. It is nevertheless necessary to apply conditions on the domain boundaries. When a boundary is a free surface, the flow on the other side is not modeled, it is represented by an external pressure. On the external free surface boundary, atmospheric pressure can be imposed. Nevertheless, there may be internal free surfaces: the fluid can fully encapsulate cavities to form bubbles. The pressure required to maintain the volume of those bubbles is a priori unknown. For example, the atmospheric pressure would not be sufficient to prevent the bubbles from deflating and eventually disappearing. Our second contribution is to propose a multi‐point constraint approach to enforce global incompressibility of those empty bubbles. We show that this approach allows to accurately model bubbly flows that involve two fluids with large density differences, for instance water and air, while only modeling the heavier fluid.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3