Structured multifractal scaling of the principal cryptocurrencies: Examination using a self‐explainable machine learning

Author:

Saâdaoui Foued1234,Rabbouch Hana15

Affiliation:

1. Rabat Business School International University of Rabat, Technopolis Sala‐Al‐Jadida Morocco

2. Department of Statistics, Faculty of Sciences King Abdulaziz University Jeddah Saudi Arabia

3. Faculty of Sciences of Monastir Lab: LR18ES15 Algebra, Number Theory & Nonlinear Analysis Monastir Tunisia

4. Institut des Hautes Etudes Commerciales (IHEC) de Sousse University of Sousse Sousse Tunisia

5. Institut Supérieur de Gestion (ISG) de Sousse University of Sousse Sousse Tunisia

Abstract

AbstractThis paper introduces a novel statistical testing technique known as segmented detrended multifractal fluctuation analysis (SMF‐DFA) to analyze the structured scaling properties of financial returns and predict the long‐term memory of financial markets. The proposed methodology is applied to assess the efficiency of major cryptocurrencies, expanding upon conventional approaches by incorporating different fluctuation regimes identified through a change‐point detection test. A single‐factor model is employed to characterize the endogenous factors influencing scaling behavior, leading to the development of a self‐explanatory machine learning approach for price forecasting. The proposed method is evaluated using daily data from three major cryptocurrencies spanning from April 2017 to December 2022. The analysis aims to determine whether the digital market has experienced significant changes in recent years and assess whether this has resulted in structured multifractal behavior. The study identifies common periods of local scaling among the three prices, with a noticeable decrease in multifractality observed after 2018. Furthermore, complementary tests on shuffled and surrogate data are conducted to explore the distribution, linear correlation, and nonlinear structure, shedding light on the explanation of structured multifractality to some extent. Additionally, prediction experiments based on neural networks fed with multi‐fractionally differentiated data demonstrate the utility of this new self‐explanatory algorithm for decision‐makers and investors seeking more accurate and interpretable forecasts.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3