TRANSPATH®—A High Quality Database Focused on Signal Transduction

Author:

Choi Claudia1,Krull Mathias1,Kel Alexander1,Kel-Margoulis Olga1,Pistor Susanne1,Potapov Anatolij1,Voss Nico1,Wingender Edgar12

Affiliation:

1. BIOBASE GmbH, Halchtersche Strasse 33, Wolfenbüttel 38304, Germany

2. Department of Bioinformatics, UKG, University of Göttingen, Goldschmidtstrasse 1, Göttingen 37077, Germany

Abstract

TRANSPATH®can either be used as an encyclopedia, for both specific and general information on signal transduction, or can serve as a network analyser. Therefore, three modules have been created: the first one is the data, which have been manually extracted, mostly from the primary literature; the second is PathwayBuilder, which provides several different types of network visualization and hence faciliates understanding; the third is ArrayAnalyzer, which is particularly suited to gene expression array interpretation, and is able to identify key molecules within signalling networks (potential drug targets). These key molecules could be responsible for the coordinated regulation of downstream events. Manual data extraction focuses on direct reactions between signalling molecules and the experimental evidence for them, including species of genes/proteins used in individual experiments, experimental systems, materials and methods. This combination of materials and methods is used in TRANSPATH®to assign a quality value to each experimentally proven reaction, which reflects the probability that this reaction would happen under physiological conditions. Another important feature in TRANSPATH®is the inclusion of transcription factor–gene relations, which are transferred from TRANSFAC®, a database focused on transcription regulation and transcription factors. Since interactions between molecules are mainly direct, this allows a complete and stepwise pathway reconstruction from ligands to regulated genes. More information is available at www.biobase.de/pages/products/databases.html.

Publisher

Hindawi Limited

Subject

Genetics,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3