Affiliation:
1. Univversité Lyon, Inria Université Claude Bernard Lyon 1, CNRS UMR5208, Institut Camille Jordan Villeurbanne France
2. Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquées University of Tlemcen Tlemcen Algeria
3. Graduate School of System Informatics Kobe University Kobe Japan
Abstract
We consider an epidemiological model with the four classical compartments of susceptible, exposed, infected, and recovered population. We add a new compartment that is supposed to describe, for a limited time, individuals that are protected from the epidemic through vaccination or medication, for instance. We model the protection phase by an age‐structured partial differential equation. The age is the time since an individual entered the protection phase. The model is then reduced by integration on the characteristics to a differential‐difference system with delay. The discrete delay represents the limited duration of the protection phase. After establishing the basic properties of the model, we show that the disease‐free equilibrium (DFE) is globally asymptotically stable when the basic reproduction number is less than one and is unstable when this number is greater than one. Furthermore, we show that even if there is no mortality during the protection phase and the basic reproduction number is greater than one, the endemic equilibrium is globally asymptotically stable. The proofs of the global asymptotic stability of both equilibria are based on carefully constructed Lyapunov functions. To complete this study on the global dynamics, we discuss some results on weak and strong uniform persistence of the disease. Finally, numerical simulations are performed to illustrate and complete our main results.
Funder
Japan Agency for Medical Research and Development
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献