Selenium–mercury interactions and relationship to aquatic toxicity: A review

Author:

Adams William J.1,Duguay Alexandra2

Affiliation:

1. Red Cap Consulting Lake Point Utah USA

2. Rio Tinto Montreal Quebec Canada

Abstract

AbstractA review of the literature pertaining to selenium–mercury (Se/Hg) interactions in aquatic species was performed to provide insight into the mechanisms allowing for the reported changes in bioaccumulation and toxicity that have been observed when the two elements occur at elevated concentrations. Selenium (Se) has been shown to protect against mercury (Hg) toxicity in all animal models evaluated (fish, birds, mammals, and plants). To explore the interaction between the two elements, data are presented on concentrations of both elements in wild‐caught fish at numerous locations. The data show that most fish have Se/Hg ratios >1.0. The importance of this ratio has been reported, with suggestions that the protective interaction is due in large part to the formation of HgSe. Data show that when the Se/Hg molar ratio is <1.0 in the diet of fish and animals, Hg toxicity will be expressed, provided that the Hg concentration is sufficiently high. This toxicity is likely the result of Se deficiency leading to an excess of reactive oxygen species. Laboratory fish toxicity studies reviewed show that Se toxicity can be reduced or eliminated when Hg is added to the diet in moderate amounts. Field studies have shown reduced accumulation of Hg when Se concentrations are increased. When Hg in the diet is significantly elevated (usually >10 µg/g), toxicity is expressed regardless of the Se present. Likewise, amelioration of Se toxicity by Hg occurs over a limited range. Tissue thresholds for Se toxicity have been derived primarily from studies where fish eggs were extracted from wild fish and embryo deformities were observed; however, the amount of Hg in the fish or ovaries was not considered, which could lead to uncertainty in the toxicity threshold. It is recommended that both elements be measured and evaluated when performing risk assessments and setting water quality criteria. Integr Environ Assess Manag 2024;00:1–11. © 2024 SETAC

Publisher

Wiley

Reference55 articles.

1. Adams W. J.(1976).The toxicity and residue dynamics of selenium in fish and aquatic invertebrates(Dissertation for Ph.D. thesis). Michigan State University.

2. The effect of selenium on mercury assimilation by freshwater organisms

3. A theory on the mechanisms regulating the bioavailability of mercury in natural waters

4. On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3