An online hyper‐volume action bounding approach for accelerating the process of deep reinforcement learning from multiple controllers

Author:

Aflakian Ali12,Rastegarpanah Alireza12,Hathaway Jamie12,Stolkin Rustam12

Affiliation:

1. Department of Metallurgy & Materials Science University of Birmingham Birmingham UK

2. The Faraday Institution Quad One, Harwell Science and Innovation Campus Didcot UK

Abstract

AbstractThis paper fuses ideas from reinforcement learning (RL), Learning from Demonstration (LfD), and Ensemble Learning into a single paradigm. Knowledge from a mixture of control algorithms (experts) are used to constrain the action space of the agent, enabling faster RL refining of a control policy, by avoiding unnecessary explorative actions. Domain‐specific knowledge of each expert is exploited. However, the resulting policy is robust against errors of individual experts, since it is refined by a RL reward function without copying any particular demonstration. Our method has the potential to supplement existing RLfD methods when multiple algorithmic approaches are available to function as experts, specifically in tasks involving continuous action spaces. We illustrate our method in the context of a visual servoing (VS) task, in which a 7‐DoF robot arm is controlled to maintain a desired pose relative to a target object. We explore four methods for bounding the actions of the RL agent during training. These methods include using a hypercube and convex hull with modified loss functions, ignoring actions outside the convex hull, and projecting actions onto the convex hull. We compare the training progress of each method using expert demonstrators, employing one expert demonstrator with the DAgger algorithm, and without using any demonstrators. Our experiments show that using the convex hull with a modified loss function not only accelerates learning but also provides the most optimal solution compared with other approaches. Furthermore, we demonstrate faster VS error convergence while maintaining higher manipulability of the arm, compared with classical image‐based VS, position‐based VS, and hybrid‐decoupled VS.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3