Short‐Term Wind Speed and Direction Forecasting by 3DCNN and Deep Convolutional LSTM

Author:

Sari Anggraini Puspita12,Suzuki Hiroshi1,Kitajima Takahiro1,Yasuno Takashi1,Prasetya Dwi Arman2,Arifuddin Rahman3

Affiliation:

1. Department of Electrical and Electronic Engineering Tokushima University 2–1 Minami Josanjima Tokushima 770–8506 Japan

2. Department of Informatics Universitas Pembangunan Nasional “Veteran” Jawa Timur Jl. Raya Rungkut Madya Gunung Anyar Surabaya 60–294 Indonesia

3. Department of Electrical Engineering University of Merdeka Malang Jl Taman Agung 1 Malang 65–146 Indonesia

Publisher

Wiley

Subject

Electrical and Electronic Engineering

Reference17 articles.

1. IRENA:Global energy transformation a roadmap to 2050 www.irena.org (2019).

2. Prediction model of wind speed and direction using deep neural network;Sari AP;Journal of Electrical Engineering, mechatronic and Computer Science (JEEMECS),2020

3. Short-term wind power forecasting using long-short term memory based recurrent neural network model and variable selection

4. Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach

5. J.Cao D.J.Farnham andU.Lall:Spatial‐temporal wind field prediction by artificial neural networks arXivarXiv:1712.05293 (2017).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3