Optimizing barium promoter for nickel catalyst supported on yttria‐stabilized zirconia in dry reforming of methane

Author:

Al‐Fatesh Ahmed Sadeq1,Ibrahim Ahmed Aidid1,Osman Ahmed I.2ORCID,Albaqi Fahad3,Arasheed Rasheed3,Francesco Frusteri4,Serena Todaro4,Anojaidi Khalid3,Lanre Mahmud Sofiu1,Abasaeed Ahmed Elhag1,Fakeeha Anis Hamza15,Bentalib Abdulaziz1,Bagabas Abdulaziz3

Affiliation:

1. Chemical Engineering Department King Saud University Riyadh Saudi Arabia

2. School of Chemistry and Chemical Engineering Queen's University Belfast Belfast UK

3. President Office King Abdulaziz City for Science and Technology (KACST) Riyadh Saudi Arabia

4. CNR‐ITAE Istituto di Tecnologie Avanzate per Energia “Nicola Giordano” Messina Italy

5. King Abdullah City for Atomic & Renewable Energy Energy Research & Innovation Center (K.A.CARE) in Riyadh Riyadh Saudi Arabia

Abstract

AbstractBarium doping effect on the activity and stability of nickel‐based catalysts, supported on yttria‐stabilized zirconia (Ni‐YZr), was investigated in dry reforming of methane. Catalysts were characterized by several techniques (nitrogen sorption, X‐ray diffraction [XRD], scanning electron microscopy with energy dispersive X‐ray, transmission electron microscopy [TEM], thermogravimetric analysis [TGA], temperature programmed oxidation, CO2‐TPD, H2‐TPR) and were tested in a fixed‐bed reactor at 800°C and 42,000 mL/h gcat. Barium played a crucial role in enhancing catalyst reducibility and CO2 adsorption at high temperatures, as indicated by the activity and stability of the Ni‐YZr catalyst. The addition of 4.0 wt% of barium appeared to be the optimal loading, allowing for CH4 conversion of 82%, which remained constant for 7 h of reaction, compared with 72% of barium‐unpromoted Ni‐YZr at 800°C. TEM images of the spent catalysts revealed the formation of multiwalled carbon nanotubes on all samples. The TGA analysis showed, however, that an increase in baria loading significantly reduced the coke formation amount, indicating the inhibition of coke formation and the enhancement of the catalytic activity. Such improvement in activity and stability was attributed to the incorporation of barium into YZr support, as revealed by XRD analysis, which inhibited the sintering of the catalysts support.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ERRATUM;Energy Science & Engineering;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3