Residual‐based a posteriori error estimates for nonconforming finite element approximation to parabolic interface problems

Author:

Ray Tanushree1,Sinha Rajen Kumar1ORCID

Affiliation:

1. Department of Mathematics Indian Institute of Technology Guwahati Guwahati India

Abstract

AbstractIn this paper, we derive a residual‐based a posteriori error estimates for nonconforming finite element approximation to parabolic interface problems. The present approach does not involve the Helmholtz decomposition while analyzing the reliability of the estimator. The constants involved in the estimators are independent of the jump of the diffusion coefficient across the interface, and the quasi‐monotonocity assumption on the diffusion coefficient is relaxed. The reliability bound of the estimator consists of the element residual, the edge flux jump and the edge solution jump. The efficiency of the estimator is analyzed by employing a coarsening strategy introduced by Chen and Feng's study. We derive both global upper bound and a local lower bound for the error and an adaptive space–time algorithm is prescribed using the derived estimators. Numerical results illustrating the behavior of the estimators are provided.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3