A novel local Hermite radial basis function‐based differential quadrature method for solving two‐dimensional variable‐order time fractional advection–diffusion equation with Neumann boundary conditions

Author:

Liu Jianming1ORCID,Li Xin Kai2ORCID,Hu Xiuling1ORCID

Affiliation:

1. School of Mathematics and Statistics Jiangsu Normal University Xuzhou China

2. Faculty of Technology De Montfort University Leicester UK

Abstract

AbstractA novel Hermite radial basis function‐based differential quadrature (H‐RBF‐DQ) method is presented in this paper based on 2D variable order time fractional advection–diffusion equations with Neumann boundary conditions. The proposed method is designed to treat accurately for derivative boundary conditions, which considerably improve the approximation results and extend the range of applicability for the method of RBF‐DQ. The advantage of the present method is that the Hermite interpolation coefficients are only dependent of the point distribution yielding a substantially better imposition of boundary conditions, even for time evolution. The proposed algorithm is thoroughly validated and is demonstrated to handle the fractional calculus problems with both Dirichlet and Neumann boundaries very well.

Funder

National Numerical Wind Tunnel Project of China

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3