Fourier spectral methods with exponential time differencing for space‐fractional partial differential equations in population dynamics

Author:

Harris Ashlin Powell1ORCID,Biala Toheeb A.2,Khaliq Abdul Q. M.3ORCID

Affiliation:

1. Brown Center for Biomedical Informatics Brown University Providence Rhode Island USA

2. Department of Mathematics The Ohio State University Columbus Ohio USA

3. Department of Mathematical Sciences and Center for Computational Science Middle Tennessee State University Murfreesboro Tennessee USA

Abstract

AbstractPhysical laws governing population dynamics are generally expressed as differential equations. Research in recent decades has incorporated fractional‐order (non‐integer) derivatives into differential models of natural phenomena, such as reaction–diffusion systems. In this paper, we develop a method to numerically solve a multi‐component and multi‐dimensional space‐fractional system. For space discretization, we apply a Fourier spectral method that is suited for multidimensional partial differential equation systems. Efficient approximation of time‐stepping is accomplished with a locally one dimensional exponential time differencing approach. We show the effect of different fractional parameters on growth models and consider the convergence, stability, and uniqueness of solutions, as well as the biological interpretation of parameters and boundary conditions.

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3