Optimization of resource allocation in 5G networks: A network slicing approach with hybrid NOMA for enhanced uRLLC and eMBB coexistence

Author:

Chandra Sekhar Rebba1ORCID,Singh Poonam2

Affiliation:

1. ECE Department Dhanekula Institute of Engineering and Technology Vijayawada India

2. ECE Department NIT Rourkela Odisha India

Abstract

SummaryTraditional Orthogonal Multiple Access (OMA) and spectrum sharing methods struggle to provide the diverse quality of service (QoS) demands for enhanced mobile broadband (eMBB), ultra‐reliable low latency communications (uRLLC), and massive machine type communications (mMTC) leading to suboptimal performance and service quality degradation. Single‐carrier‐non‐orthogonal multiple access (SC‐NOMA) appears to be a more optimized solution. It can serve multiple users simultaneously on the same time‐frequency resources. This approach offers both enhanced spectrum efficiency and meets the QoS requirements for the coexistence of eMBB, uRLLC, and mMTC. However, SC‐NOMA has some drawbacks. Decoding a user's signal involves a complex successive interference cancellation (SIC) process that gets harder with more users causing delays and errors. Additionally, strong user signals can interfere with weaker ones, limiting the number of users per channel. In order to overcome the drawbacks associated with OMA and SC‐NOMA, this paper introduces a new method called user‐paired NOMA (hybrid NOMA). Hybrid NOMA adopts a strategic approach, employing two user pairing techniques: near‐far/far‐near (NF‐FN) and near‐near/far‐far (NN‐FF). NF‐FN pairing prioritizes users with similar signal strengths but different distances from the base station. This minimizes interference for the weaker user during SIC. NN‐FF pairing, on the other hand, groups users with similar signal strengths and proximity. This approach further simplifies SIC and minimizes potential interference altogether. The simulation results demonstrate trade‐offs between eMBB and uRLLC performance. OMA suffers with dedicated resource allocation, while SC‐NOMA balances performance but experiences interference. NN‐FF prioritizes eMBB and offers best latency, while NF‐FN prioritizes uRLLC with high spectral efficiency but suffers from higher latency. Finally, by providing a thorough grasp of how hybrid NOMA resource allocation works to improve the performance of various use cases, this research makes a significant contribution to the field of 5G spectrum optimization.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3