Using long‐term data from a whole ecosystem warming experiment to identify best spring and autumn phenology models

Author:

Schädel Christina12ORCID,Seyednasrollah Bijan3ORCID,Hanson Paul J.4ORCID,Hufkens Koen5ORCID,Pearson Kyle J.4ORCID,Warren Jeffrey M.4ORCID,Richardson Andrew D.13ORCID

Affiliation:

1. Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA

2. Woodwell Climate Research Center Falmouth Massachusetts USA

3. School of Informatics, Computing and Cyber Systems Northern Arizona University Flagstaff Arizona USA

4. Environmental Sciences Division and Climate Change Science Institute Oak Ridge National Laboratory Oak Ridge Tennessee USA

5. BlueGreen Labs 9120 Melsele Belgium

Abstract

AbstractPredicting vegetation phenology in response to changing environmental factors is key in understanding feedbacks between the biosphere and the climate system. Experimental approaches extending the temperature range beyond historic climate variability provide a unique opportunity to identify model structures that are best suited to predicting phenological changes under future climate scenarios. Here, we model spring and autumn phenological transition dates obtained from digital repeat photography in a boreal PiceaSphagnum bog in response to a gradient of whole ecosystem warming manipulations of up to +9°C, using five years of observational data. In spring, seven equally best‐performing models for Larix utilized the accumulation of growing degree days as a common driver for temperature forcing. For Picea, the best two models were sequential models requiring winter chilling before spring forcing temperature is accumulated. In shrub, parallel models with chilling and forcing requirements occurring simultaneously were identified as the best models. Autumn models were substantially improved when a CO2 parameter was included. Overall, the combination of experimental manipulations and multiple years of observations combined with variation in weather provided the framework to rule out a large number of candidate models and to identify best spring and autumn models for each plant functional type.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3