Acclimation of subarctic vegetation to warming and increased cloudiness

Author:

Ndah Flobert A.1ORCID,Maljanen Marja1,Kasurinen Anne1,Rinnan Riikka23,Michelsen Anders24,Kotilainen Titta5,Kivimäenpää Minna16

Affiliation:

1. Department of Environmental and Biological Sciences University of Eastern Finland Kuopio Finland

2. Terrestrial Ecology Section, Department of Biology University of Copenhagen Copenhagen Ø Denmark

3. Center for Volatile Interactions (VOLT), Department of Biology University of Copenhagen Copenhagen Ø Denmark

4. Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen K Denmark

5. Natural Resources Institute Finland Turku Finland

6. Natural Resources Institute Finland Suonenjoki Finland

Abstract

AbstractSubarctic ecosystems are exposed to elevated temperatures and increased cloudiness in a changing climate with potentially important effects on vegetation structure, composition, and ecosystem functioning. We investigated the individual and combined effects of warming and increased cloudiness on vegetation greenness and cover in mesocosms from two tundra and one palsa mire ecosystems kept under strict environmental control in climate chambers. We also investigated leaf anatomical and biochemical traits of four dominant vascular plant species (Empetrum hermaphroditum, Vaccinium myrtillus, Vaccinium vitis‐idaea, and Rubus chamaemorus). Vegetation greenness increased in response to warming in all sites and in response to increased cloudiness in the tundra sites but without associated increases in vegetation cover or biomass, except that E. hermaphroditum biomass increased under warming. The combined warming and increased cloudiness treatment had an additive effect on vegetation greenness in all sites. It also increased the cover of graminoids and forbs in one of the tundra sites. Warming increased leaf dry mass per area of V. myrtillus and R. chamaemorus, and glandular trichome density of V. myrtillus and decreased spongy intercellular space of E. hermaphroditum and V. vitis‐idaea. Increased cloudiness decreased leaf dry mass per area of V. myrtillus, palisade thickness of E. hermaphroditum, and stomata density of E. hermaphroditum and V. vitis‐idaea, and increased leaf area and epidermis thickness of V. myrtillus, leaf shape index and nitrogen of E. hermaphroditum, and palisade intercellular space of V. vitis‐idaea. The combined treatment caused thinner leaves and decreased leaf carbon for V. myrtillus, and increased leaf chlorophyll of E. hermaphroditum. We show that under future warmer increased cloudiness conditions in the Subarctic (as simulated in our experiment), vegetation composition and distribution will change, mostly dominated by graminoids and forbs. These changes will depend on the responses of leaf anatomical and biochemical traits and will likely impact carbon gain and primary productivity and abiotic and biotic stress tolerance.

Funder

OLVI-Säätiö

Pohjois-Savon Rahasto

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3