Predicting Survival in Patients with Advanced NSCLC Treated with Atezolizumab Using Pre‐ and on‐Treatment Prognostic Biomarkers

Author:

Benzekry Sébastien1ORCID,Karlsen Mélanie1,Bigarré Célestin1,Kaoutari Abdessamad El1,Gomes Bruno2,Stern Martin3,Neubert Ales4,Bruno Rene5ORCID,Mercier François6ORCID,Vatakuti Suresh7,Curle Peter8,Jamois Candice9ORCID

Affiliation:

1. COMPutational Pharmacology and Clinical Oncology Department, Centre Inria de l'Université Côte d'Azur, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258 Aix Marseille University UM105 Marseille France

2. Pharma Research and Early Development, Early Development Oncology Roche Innovation Center Basel Basel Switzerland

3. Pharma Research and Early Development, Early Development Oncology Roche Innovation Center Zurich Zurich Switzerland

4. Pharma Research and Early Development, Data & Analytics Roche Innovation Center Basel Basel Switzerland

5. Modeling and Simulation, Clinical Pharmacology Genentech Research and Early Development Marseille France

6. Modeling and Simulation, Clinical Pharmacology Genentech Research and Early Development, Roche Innovation Center Basel Basel Switzerland

7. Pharma Research and Early Development, Predictive Modeling and Data Analytics Roche Innovation Center Basel Basel Switzerland

8. Inovigate Basel Switzerland

9. Pharma Research and Early Development, Translational PKPD and Clinical Pharmacology Roche Innovation Center Basel Basel Switzerland

Abstract

Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics‐machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on‐treatment simple blood markers (albumin, C‐reactive protein, lactate dehydrogenase, and neutrophils). Developed for immune‐checkpoint inhibition (ICI) in non‐small cell lung cancer on three phase II trials (533 patients), kML was validated on the two arms of a phase III trial (ICI and chemotherapy, 377 and 354 patients). It outperformed the current state‐of‐the‐art for individual predictions with a test set C‐index of 0.790, 12‐months survival accuracy of 78.7% and hazard ratio of 25.2 (95% CI: 10.4–61.3, P < 0.0001) to identify long‐term survivors. Critically, kML predicted the success of the phase III trial using only 25 weeks of on‐study data (predicted HR = 0.814 (0.64–0.994) vs. final study HR = 0.778 (0.65–0.931)). Modeling on‐treatment blood markers combined with predictive machine learning constitutes a valuable approach to support personalized medicine and drug development. The code is publicly available at https://gitlab.inria.fr/benzekry/nlml_onco.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3